
Computing Faculty
Module Descriptors

Spring 2019

BSc in Computing Science

Stage 2

Module Data Structures and Algorithms

Course code BSCH-DSA

Credits 10

Important notes
Please note that this module is not

intended for first year students.

Allocation of marks
60% Continuous Assessment

40% Final Examination

Intended Module Learning Outcomes

Upon successful completion of this module, you will be able to:

1. implement and use data structures introduced on the course;

2. apply object-oriented methods when designing data structures;

3. implement both recursive and non-recursive solutions to classical data structure

problems;

4. implement both linear and non-linear data structures;

5. analyse simple algorithms using asymptotic analysis;

6. compare the efficiency of algorithms solving similar problems;

7. implement algorithms on data structures and relate these to realistic problems;

8. implement algorithms that process graphs.

Module Objectives

This module builds on the work completed in the Object-oriented Programming module and

applies the methods learned there to the design of classes that implement data structures. As

in all programming modules, a key objective is the acquisition, on behalf of the learner, of good

software engineering skills and the application of these skills to the design and implementation

of software components. At the heart of all software design is the implementation of

appropriate data structures that provide efficient data models for the problem at hand.

Learners develop an in depth knowledge of the standard data structures: stacks, queues, sets,

bags and maps; and also learn to implement these using both linear (linked lists, arrays) and

non-linear (binary search trees, avl trees, B-trees) data structures.

Module Curriculum

Recursion

 Concept of recursion,

 recursive functions,

 recursion over sequences,

 tail recursion.

 Divide and conquer algorithms.

Analysis of algorithms

 Counting and calculating the time complexity of an algorithm.

 Basic ideas and definitions of asymptotic analysis.

 Big O notation and its application to the evaluation of temporal cost of algorithms.

 Comparing performance using big O notation.

 Basic time and space analysis.

Sorting

 Simple sorting algorithms: insertion, selection, bubble.

 QuickSort. Merge Sort. Heapsort.

 Analysis of sorting algorithms using big O notation.

 Sorting in linear time.

Dynamic Data structures

 Constructing lists using singly linked lists and doubly linked lists.

 Using these linear data structures to implement classes that encapsulate: stacks,
queues, priority queues and sets.

 Problem solving with these data structures.

 Concept and definition of Hashtables.

 Implementing classes that encapsulate a hash table and also the use of hash tables
in implementing sets.

 Concept and definition of Trees: representing rooted trees, binary search trees,
query, insertion, deletion, traversal.

 Optimising the performance of binary trees with avl trees and black-red trees and B-
trees.

 Implementing data structures with trees.

Graphs and graph algorithms

 Graphs: basic concepts and representation.

 Breadth first search, depth first search.

 Dijkstra shortest-path algorithm,

 Dijkstra-Prim minimum spanning tree algorithm.

